Role of Blockchain in Precision Medicine: Challenges, Opportunities, and Solutions
Global Healthcare Crisis

- **40 of the 56 million annual deaths** globally occur from preventable chronic conditions such as cardiovascular disease, cancer, and chronic respiratory conditions.
- **80% of all heart disease, diabetes, and stroke** and **40% of cancers** can be prevented by optimizing risk factors including obesity, hypertension, sedentary activities, poor nutrition, tobacco, and alcohol use.

- **Global aging** and an **expanding middle class** are a major contributor to the chronic disease epidemic.
- **10,000** Americans turning **65 everyday**.
- **80%** of Medicare costs are accounted for **20% of the patients**, who are **elderly**, with **multiple comorbidities** such as diabetes, COPD, or congestive heart failure.

US Healthcare Costs

- 2007: $2.298 TRILLION (16.4%)
- 2012: $2.807 TRILLION (17.9%)
- 2017: $3.660 TRILLION (18.4%)
- 2022: $5.009 TRILLION (19.9%)

CMS—National Health Expenditure Projections 2012-2022 / Lancet Global Burden of Disease 2015 / World Health Organization / CDC
Precision Medicine—A Major Big Data Challenge

Precision Health will see a $140+ billion market opportunity by 2025

Key Data Types/Factors
- Omics/Dx: 30%
- Clinical: 15%
- Remote Care: 20%
- Exogenous: 35%

Avg. per Patient Lifetime Data Volume (in TB)
- Omics/Dx: 6.0 TB
- Clinical: 0.4 TB
- Remote Care: 220.0 TB
- Exogenous: 880.0 TB

The American Library of Congress has 15 Terabytes (TB) of data in total.

Data explosion along the care cycle globally to generate 4×10^{10} TB by 2020.

Source: IBM Watson Health; Frost & Sullivan Analysis.
Precision Medicine—Inherent Challenges

- **Health Data Interoperability**
 - Cost 150,000 lives and $18.6 billion per year
 - About 46% of US clinicians do not have a complete view of their patients’ health history/records

- **Cybersecurity**
 - Healthcare data is worth 10x the price of credit card data in the black market
 - US Hospital Cybersecurity market alone is expected to cross the $5 billion mark by 2021

- **Value-based Care/Reimbursement**
 - About 90% top-selling blockbuster medicines only work for 30–50% of the patients
 - 5–10% of healthcare costs are fraudulent (e.g. excessive billing and/or billing for non-performed services)

- **Data Ownership and Incentivizing Models**
 - About 53% of patients in the US believe that they own their healthcare data; 20% simply do not know
 - The global Healthcare Big Data and Analytics market will amount to $7.50 billion by 2020

- **Healthcare Consumerism and ‘Quantified-Self’**
 - About 70% of consumers in the US track their health symptoms. 74% appreciate receiving customized alerts/news feeds post care
 - 41% of patients will change their physicians if they are not allowed to access their health records

Source: Frost & Sullivan Analysis
Role of Blockchain in Precision Medicine Practice
What is Blockchain?

There are many definitions, with the evolving application potential of blockchain technologies.

Frost & Sullivan’s Definition:
A blockchain is a new data structure that creates trusted, **distributed digital ledgers** for assets and other data. It is an **immutable** and **time stamped** record of digital events shared **peer to peer** between different parties. It can only be updated by **consensus of a majority** of the participants in the system and, once entered, information is very **hard to erase**.

Despite all the hype, for many people (across different industries), the blockchain concept still seems difficult to grasp, which makes it one of the most misunderstood technologies of 2017.
Blockchain–Foundational Properties and Differential Value Propositions

Blockchain is a type of distributed/decentralized ledger/database used to record digital transactions.

Properties of Blockchain Technology

- **Cryptographically Secured**: Transactions added to the blockchain are irrevocable or immutable.
- **Decentralized**: Network of replicated databases, synchronized through the Internet and visible to users/miners within the network.
- **Trusted**: Network requires consensus, which allows for transactions to occur between unknown parties.
- **Peer-to-Peer Network**: Transactions that satisfy certain conditions are recorded, eliminating a central administrator or third-party intermediaries.
- **Automated**: Avoids double counting and allows transactions to occur automatically.

Transactions added to the blockchain are irrevocable or immutable

Network requires consensus, which allows for transactions to occur between unknown parties

Network of replicated databases, synchronized through the Internet and visible to users/miners within the network

Transactions that satisfy certain conditions are recorded, eliminating a central administrator or third-party intermediaries

Avoids double counting and allows transactions to occur automatically
How Blockchain Works
Understanding its core properties and differential value propositions

1. Define the Transaction
User A wants to send money/data/asset to User B

2. Broadcast
The Transaction is initiated as a ‘Block’

3. Authentication
The Block is shared among all parties in the network (e.g., Bitcoin)

4. Create Blocks
Network participants approve the transaction and render it valid

5. Block Chaining
The new ‘Block’ is added to the Chain, creating an immutable and timestamped record of the transaction

6. Transaction Fulfilment
The ownership of money/data/asset is transferred from User A to B

Properties of Blockchain Technology
- Peer-to-Peer Network
- Decentralized
- Cryptographically Secured
- Trusted
- Automated

Source: Frost & Sullivan
6 Big Themes in Healthcare Industry and Role of Blockchain Technology

Is Blockchain theMissing Puzzle in the Healthcare Industry’s Digital Transformation Journey?

- Health Data Interoperability
- Incentivizing/Monetizing Digital Health Business Models
- Healthcare Consumerism
- Value-based Care/Reimbursement
- Personalized Health and Precision Medicine Practice
- Cybersecurity

Source: Frost & Sullivan
Blockchain Adoption Timeline by Major Healthcare Application/Use Case, Global

- **National Medical/Health Records**
- **Claims Adjudication, RCM & Billing Management**
- **Drug Supply Chain & Smart Contracts**
- **Digital Identity Verification/Management**
- **Health Token (HSN, Research, Wellness Incentives)**
- **IoMT (Medical Device and Patient-generated Data Exchange)**
- **Clinical Trials Records & eConsenting**
- **Regulatory Audit Trails & Adverse Event Safety Monitoring**
- **Universal Health Records and Identities**

Source: Frost & Sullivan
Blockchain Implementation Challenges in Healthcare

- Nascent technology–Healthcare industry inertia
- Standardization–Healthcare terminologies/codes; semantic integrity
- Scalability challenges–Technology/Economic
- Threat of substitute–Emerging DLTs (IOTA, Graph DB)
- Connected-only mode–Requires network/Offline use cases?
- Negative news–Bitcoin as ransom money

Source: Frost & Sullivan Analysis
Blockchain-based Solutions for Major Precision Medicine Stakeholders

<table>
<thead>
<tr>
<th>Who are the users?</th>
<th>What use cases they can leverage now vs. next 5 yrs?</th>
<th>What are the key deployment/implementation challenges to consider?</th>
<th>What they would gain post implementation (ROI)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payers/Insurance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharma & Academic Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MedTech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIT/Vendor Partner</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The above framework is a strategic model developed by Frost & Sullivan to help healthcare industry stakeholders identify the most relevant blockchain use cases and the strategic imperatives for successful implementation.

Source: Frost & Sullivan Analysis
Future Prospective–Role of Blockchain in a Connected Health Ecosystem

Off-chain storage
- Stores different types of health data (e.g., images, genomics, and lab reports)

Data Lakes

Blockchain
- Patient’s unique identifier
- Cryptographically secure
- Time stamped
- Patient can control whom to give permission to share data

Providers
- Providers use health application to access health data

Patient
- Patients use mobile devices to assign access permission to data and provide public key

Payers
- Automate claim adjudication and payment processing with predefined smart contracts

Source: Frost & Sullivan
Related Research and Thought Leadership

- Complimentary Frost Prospective:
 - Why Healthcare Industry Should Care About Blockchain?
 - Top 5 Reasons Why Every Healthcare Company Should Invest in Blockchain
- Listen to this Webinar now on-demand: Healthcare’s Challenges and Blockchain - A Promising But Bumpy Ride!
- Recent Research Study:
 - Blockchain Technology in Global Healthcare, 2017–2025

Twitter
https://www.linkedin.com/company/frost-&-sullivan

LinkedIn Group
https://www.linkedin.com/company/frost-&-sullivan

GIL Community
http://ww2.frost.com/gil-community